Classification of Chronic Kidney Disease based on health care records using machine learning with Support Vector Machine

Abdurrahman Niarman, iswandi iswandi, Amuharnis Amuharnis

Abstract


Chronic Kidney Disease (CKD) is a global health concern with a rising prevalence that necessitates early and accurate diagnosis for effective management. This study proposes the application of Machine Learning (ML), specifically Support Vector Machine (SVM), to classify CKD based on health care records. Leveraging a comprehensive dataset of patient health records, including clinical and demographic information, the research aims to develop a predictive model that can assist in the timely identification of individuals at risk of CKD. The methodology involves preprocessing the health care records, extracting relevant features, and implementing the SVM algorithm for classification. The dataset is divided into training and testing sets to evaluate the model's performance.  The SVM classification model that was developed after going through the data preprocessing process produced results that were good enough to be able to classify whether a patient was diagnosed with CKD or not with an accuracy level of 98% and a total of 400 lines of data and 25 features.


References


Chazar, C., & Erawan, B. (2020). Machine Learning Diagnosis Kanker Payudara Menggunakan Algoritma Support Vector Machine. INFORMASI (Jurnal Informatika Dan Sistem Informasi), 12(1), 67–80. https://doi.org/10.37424/informasi.v12i1.48

Septhya, D., Rahayu, K., Rabbani, S., Fitria, V., Irawan, Y., & Hayami, R. (2023). MALCOM: Indonesian Journal of Machine Learning and Computer Science Implementation of Decision Tree Algorithm and Support Vector Machine for Lung Cancer Classification Implementasi Algoritma Decision Tree dan Support Vector Machine untuk Klasifikasi Penyakit Kanker Paru. 3, 15–19.

Kemenkes. (2013). Laporan Riset Kesehatan Dasar (RISKESDAS) Tahun 2013.

Lee, J., Park, D., & Lee, C. (2017). Feature selection algorithm for intrusions detection system using sequential forward search and random forest classifier. KSII Transactions on Internet and Information Systems, 11(10), 5132–5148. https://doi.org/10.3837/tiis.2017.10.024

Muhammad Prasetyo, T., Amrullah, A., Syahrir, S., & Nurina Sari, B. (2022). IMPLEMENTASI ALGORITMA SVM (SUPPORT VECTOR MACHINE) DALAM KLASIFIKASI PENYAKIT PARU-PARU BERDASARKAN FITUR POLA BENTUK. Jurnal Teknologi Informasi, 6(1).

Neneng, N., Putri, N. U., & Susanto, E. R. (2021). Klasifikasi Jenis Kayu Menggunakan Support Vector Machine Berdasarkan Ciri Tekstur Local Binary Pattern. CYBERNETICS, 4(02). https://doi.org/10.29406/cbn.v4i02.2324

Pranandari, R., & Supadmi, W. (2015). FAKTOR RISIKO GAGAL GINJAL KRONIK DI UNIT HEMODIALISIS RSUD WATES KULON PROGO RISK FACTORS CRONIC RENAL FAILURE ON HEMODIALYSIS UNIT IN RSUD WATES KULON PROGO. In Tahun (Vol. 11, Issue 2).

Purwaningsih, E. (2016). Seleksi Mobil Berdasarkan Fitur Dengan Komparasi Metode Klasifikasi Neural Network, Support Vector Machine, dan Algoritma C4.5. Jurnal Pilar Nusa Mandiri, XII(2), 153–160.

Slyvia Anderson, P., Wilson, L. M., & Peter, A. (2006). Patofisiologi : konsep klinis proses-proses penyakit. EGC.

Suhardjono, Wijaya, G., & Hamid, A. (2019). Prediksi Waktu Kelulusan Mahasiswa Menggunakan SVM Berbasis PSO. Bianglala Informatika, 7(2).

Sukandar, E. (2006). Nefrologi Klinik (3rd ed.). Universitas padjajaran Press.

Webster, A. C., Nagler, E. V., Morton, R. L., & Masson, P. (2017). Chronic Kidney Disease. In The Lancet (Vol. 389, Issue 10075, pp. 1238–1252). Lancet Publishing Group. https://doi.org/10.1016/S0140-6736(16)32064-5




DOI: http://dx.doi.org/10.26887/jtsti.v2i2.4080

Refbacks

  • There are currently no refbacks.


JTSTI : Journal of Tourism Science, Technology and Industry
E-ISSN 2962-5378 | DOI: 10.26887/jtsti.v2i2

Websitehttps://journal.isi-padangpanjang.ac.id/index.php/JTST

Email: jurnalprodipariwisata1234@gmail.com

Editor in Chief: Fresti Yuliza, S.Sn., M.A | Managing EditorFernando Fasandra, S.ST., M.Par |  | Anggun, A.Md. AB

Publisher: Program Studi Pariwisata, Fakultas Seni Rupa dan Desain, Institut Seni Indonesia Padangpanjang

Editorial Office: Gedung Fakultas Seni Rupa dan Desain Lt. 1 Institut Seni Indonesia Padangpanjang, Jalan Bahder Johan, Kota Padangpanjang, Sumatera Barat, Indonesia 27128 | Phone: (0752) 82077 | Fax: (0752) 82803


JTSTI: Journal of Tourism Science, Technology and Industry © 2022 by Program Studi Pariwisata, Fakultas Seni Rupa dan Desain, Institut Seni Indonesia Padangpanjang is licensed under CC BY 4.0